
Coink Documentation
Release 0.0.1

The Coink contributors.

Aug 24, 2018

Contents

1 Introduction 1
1.1 What is Coink? . 1
1.2 What do we need? . 1

2 Setup 3
2.1 Board . 3
2.2 MicroPython . 5
2.3 Sensor . 6
2.4 References . 6

3 Build 7
3.1 Ramp . 7
3.2 Box . 8
3.3 Wiring . 10

4 Data 11
4.1 Visualization . 11
4.2 Differences . 11

5 Cloud integration 17
5.1 Flashing the NodeMCU . 17
5.2 Coink server . 17
5.3 Thingspeak . 19
5.4 References . 19

6 Indices and tables 21

i

ii

CHAPTER 1

Introduction

1.1 What is Coink?

Coink is an IoT piggy bank.

In the 21st Century piggy banks can be very easily connected to the cloud and become part of the rapidly growing
Internet of Things.

Having automatic reports of your savings online is not only very convenient but can also make saving fun for kids!
With Coink you can have real-time graphics with your cumulative savings as well as the recent daily savings to track
your progress.

Adults may use it as well, not only for fun, but to help them quit smoking, for example, keeping track of the money
they save each day. Or in bars and restaurants, to keep track of the tips they get each day.

Of course the magnetic coin detection system can be used elsewhere: in vending machines, arcade game machines. . .
The cloud-connected piggy bank is just an application.

1.2 What do we need?

In order to build Coink, we will need:

• A wooden box.

• A 3D-printed ramp1.

• A magnet attached to the ramp, that generates a static magnetic field.

• A 3D Magnetic Sensor 2GO2 board from Infineon, that will detect the changes on the magnetic field when a
coin passes through the ramp and in between the magnet and the sensor.

1 https://github.com/CojoCompany/coink/blob/master/3d/ramp.stl
2 https://www.infineon.com/cms/en/product/sensor/magnetic-position-sensor/3d-magnetic-sensor/tle493d-a2b6-ms2go/

1

https://github.com/CojoCompany/coink/blob/master/3d/ramp.stl
https://www.infineon.com/cms/en/product/sensor/magnetic-position-sensor/3d-magnetic-sensor/tle493d-a2b6-ms2go/
https://github.com/CojoCompany/coink/blob/master/3d/ramp.stl
https://www.infineon.com/cms/en/product/sensor/magnetic-position-sensor/3d-magnetic-sensor/tle493d-a2b6-ms2go/

Coink Documentation, Release 0.0.1

• An ESP8266-based board, in particular a NodeMCU development kit3, that reads the data from the 3D magnetic
sensor through I2C and sends it through WiFi to the cloud.

• A cloud server4 that analyzes the raw data and identifies the different coins.

Fig. 1: Coink project overview

1.2.1 References

3 https://github.com/nodemcu/nodemcu-devkit-v1.0
4 https://github.com/CojoCompany/coink

2 Chapter 1. Introduction

https://github.com/nodemcu/nodemcu-devkit-v1.0
https://github.com/CojoCompany/coink
https://github.com/nodemcu/nodemcu-devkit-v1.0
https://github.com/CojoCompany/coink

CHAPTER 2

Setup

2.1 Board

We use an ESP8266-based board, in particular a NodeMCU development kit3.

Fig. 1: NodeMCU development kit.

It is a very cheap, but powerful board.

3 https://github.com/nodemcu/nodemcu-devkit-v1.0

3

https://github.com/nodemcu/nodemcu-devkit-v1.0
https://github.com/nodemcu/nodemcu-devkit-v1.0

Coink Documentation, Release 0.0.1

Fig. 2: NodeMCU development kit pinout.

4 Chapter 2. Setup

Coink Documentation, Release 0.0.1

2.2 MicroPython

We use the Python programming language or, more accurately, the MicroPython2 programming language. Not only it
is a beautiful language, but also implements an HTTP stack that will ease the process of communicating with a remote
server in any IoT project.

In order to start using MicroPython, we need to load the MicroPython firmware onto the ESP8266 board first.

2.2.1 Flashing the firmware

We need to make sure we have the required permissions to flash the device. Either:

sudo usermod -a -G dialout $USER

Or, to avoid the need to log out of your session:

sudo echo 'ATTRS{idVendor}=="1a86", ATTRS{idProduct}=="7523", MODE="0666"'> /etc/udev/
→˓rules.d/99-nodemcu.rules
sudo udevadm control --reload-rules

Note: You might need to adjust the idVendor and idProduct depending on what you see with dmesg when
connecting the device.

We use esptool1 to reflash the device, which is very easy to install with:

pip install --user esptool

Then, reconnect the device and erase its flash memory with:

esptool.py --port /dev/ttyUSB0 erase_flash

Download the latest MicroPython firmware for ESP8266 boards and flash it with:

esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --flash_size=detect 0
→˓esp8266-20180511-v1.9.4.bin

2.2.2 Testing the REPL

Once the MicroPython firmware is on the device we can access the REPL (Python prompt) over serial with a 115000
baudrate:

screen /dev/ttyUSB0 115200

If everything went well we should see a >>> (if not, try to press “enter”). You may now try to execute a simple
print() call, which will be executed in the board itself:

2 https://docs.micropython.org/
1 https://github.com/espressif/esptool/

2.2. MicroPython 5

https://docs.micropython.org/
https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/intro.html
https://github.com/espressif/esptool/
https://micropython.org/download#esp8266
https://docs.micropython.org/
https://github.com/espressif/esptool/

Coink Documentation, Release 0.0.1

Fig. 3: MicroPython REPL.

2.3 Sensor

The ESP8266 board is connected to the sensor through an I2C bus, in particular, using D1 (GPIO5) for the clock and
D2 (GPIO4) for the data transmission. The sensor is powered with the ESP8266 board directly, using its 3V3 and
GND pins.

Once the sensor is connected to the board we can check the I2C connection by simply:

from machine import I2C
from machine import Pin

i2c = I2C(scl=Pin(5), sda=Pin(4), freq=400000)
devices = i2c.scan()
print(devices)

Which should print a non-empty list.

2.4 References

6 Chapter 2. Setup

CHAPTER 3

Build

3.1 Ramp

Coink is actually very easy to build. First we need the ramp to insert the coins. The ramp is a 3D design that can be
very easily printed with any FDM 3D printer (or any other more-advance 3D printer if you have access to it).

The 3D design is very simple but, in turn, we need to do some work before using it. First, we need to glue some plastic
sheets to cover the inner parts of the ramp. This way we avoid the coin bumping into any disturbances around the
sensor board, where the ramp is not continuous:

Fig. 1: Plastic sheets covering the inner parts of the ramp.

Then we need to cover the outter part of the ramp by glueing another plastic sheet. We will glue our magnet (in orange)
there, just in front of the sensor board. Any magnet will do, we just need to make sure it is not too powerful, or the
coins will get stuck in the ramp!

7

Coink Documentation, Release 0.0.1

Fig. 2: Plastic sheet covering the outter part of the ramp and magnet attached to it.

3.2 Box

The piggy bank can be made with a small wooden box. Wood is easy to work with, which is important as we will need
to create a hole for the ramp in the box:

Fig. 3: Wooden box with a hole for the ramp.

Once we have the hole, we can very easily glue the ramp to the box with some epoxy to make sure it does not move.

Even if obvious, we should make sure the magnet and the magnetic sensor board both fit inside the box before glueing
the ramp!

Once the ramp is fixed, we only need to stick the rest of the components to the lid:

Note that we added a simple power circuit consisting of:

• A LiPo battery (single cell).

• A 3.3 V step-down DC-DC converter mounted on the breadboard.

The output of the converter directly powers the board at 3.3 V.

8 Chapter 3. Build

Coink Documentation, Release 0.0.1

Fig. 4: Ramp glued to the box.

Fig. 5: Detail of the ramp inside the box.

3.2. Box 9

Coink Documentation, Release 0.0.1

Fig. 6: All the required components fixed and the system powered!

3.3 Wiring

Wiring the magnetic sensor board and the NodeMCU boils down to connect only 4 wires:

NodeMCU pin Magnetic sensor pin
D1 (GPIO5) SDA (P2.10)
D2 (GPIO4) SCL (P2.11)
3V3 3V3 (P1.0)
GND GND

Fig. 7: NodeMCU and magnetic sensor wiring.

10 Chapter 3. Build

CHAPTER 4

Data

4.1 Visualization

If we visualize the sensor readings during one second, when a coin is passing by, we note that there is little time
(around 50 milliseconds) to get useful data:

Each of the axis has a different iddle-state reading, so we can normalize the readings by first dividing by the average
iddle-state reading and then substracting 1 to have an iddle-state reading of 0 in all axis and also to have data curves
that represent relative variations of the magnetic field instead of absolute.

After doing this normalization we can visualize our region of interest for both 1 C and 2 C coins:

4.2 Differences

Having a look at the previous curves we might notice some differences between the 1 C and 2 C curves. Among them
we might notice a small difference in the time span. Although that makes sense (the 2 C coin has a bigger diameter
than the 1 C coin) and we would expect it to alter the magnetic field for a longer period, this is assuming the speed
is the same for both coins. That, of course, is not very reliable, as we could simply insert coins with higher speed
when pushing them down the ramp. Therefore, we will ignore differences in the x-axis (time) and focus on the y-axis
(magnetic field relative variations).

In order to be able to compare curves and try to differenciate among different coins, we did some simple feature
engineering to try to extract some curve features that are relevant and easy to compare/match against known profiles:

min_[axis] Represents the absolute minimum value, for the given axis.

d0_[axis] Represents the maximum positive increase since the last rolling minimum from the iddle state and until the
absolute minimum is reached, for the given axis.

l0_[axis] Represents the low value where d0_[axis] started, for the given axis.

Although the differences for those engineered features might seem obvious for the curves shown above, we want to
make sure that the differences are significant on average for all the data we gathered.

To visualize these differences we can use box plots for all min, l0 and d0 features, for all axis as well:

11

Coink Documentation, Release 0.0.1

0.0 0.2 0.4 0.6 0.8 1.0
t

20

30

40

50

60

70

80

90

100

x
y
z

We can see there are many significant differences between the two coins. Although we could use only the most
significant among them it is better to simply use all features. Matching against the average plus some expected
deviation we can not only differenciate between 1 C and 2 C coins, but also detect unexpected (potentially fake coins)
readings.

12 Chapter 4. Data

Coink Documentation, Release 0.0.1

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
t

0.5

0.4

0.3

0.2

0.1

0.0

0.1

1

x
y
z

4.2. Differences 13

Coink Documentation, Release 0.0.1

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
t

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1
2

x
y
z

Fig. 1: Engineered features.

1 2
coin

0.70

0.65

0.60

0.55

0.50

0.45

0.40

min_x

1 2
coin

min_y

1 2
coin

min_z

Boxplot grouped by coin

14 Chapter 4. Data

Coink Documentation, Release 0.0.1

1 2
coin

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
d0_x

1 2
coin

d0_y

1 2
coin

d0_z

Boxplot grouped by coin

1 2
coin

0.4

0.3

0.2

0.1

0.0

l0_x

1 2
coin

l0_y

1 2
coin

l0_z

Boxplot grouped by coin

4.2. Differences 15

Coink Documentation, Release 0.0.1

16 Chapter 4. Data

CHAPTER 5

Cloud integration

5.1 Flashing the NodeMCU

Before running our cloud server, we definitely want to actually upload the Coink MicroPython code to the NodeMCU
board.

This is actually very simple, but we do need to have some dependencies installed: screen and ampy. Once we have
those, we can simply connect our board to our computer with an USB cable and:

./flash.sh

This Bash script will upload all the necessary code to our board.

5.2 Coink server

Running the Coink server is necessary to appropriately process the data and classify the coins in “the cloud”, whether
it is your own computer or an actual cloud service.

The server is implemented with Flask1 and requires some other Python packages to run. Fortunately, Pipenv2 helps us
to create the required virtual environment with all dependencies installed:

pipenv sync

If we want to have all the development dependencies installed, use instead:

pipenv sync --dev

Our prototype is designed to work within a local area network, where we have the NodeMCU and our computer
connected to the same WiFi network (probably our home network). In order to be able to do so, we need to copy the
contents of the config.template.json to a new config.json file, that would look like this:

1 http://flask.pocoo.org/
2 https://pipenv.readthedocs.io/

17

http://flask.pocoo.org/
https://pipenv.readthedocs.io/
http://flask.pocoo.org/
https://pipenv.readthedocs.io/

Coink Documentation, Release 0.0.1

{
"thingspeak_key": "0123456789ABCDEF",
"wifi": {

"ssid": "MyWifi",
"password": "secure123"

},
"server": {

"host": "0.0.0.0",
"port": "5000"

}
}

We need to modify the "wifi" fields with our network name and password.

Note that there is another section to configure the "server". There, we need to put our computer IP address and a
port, where our server will be listening on.

Note: The access port should be just a free port, try it for example with 5000

Then we can run the server with Pipenv:

pipenv run python server.py

If everything went well, you should be able to access the configured server with your web browser. To do so, visit
http://your-defined-host:your-defined-port/ (i.e.: http://192.168.43.110:5000/), you
should see the Coink server page:

Fig. 1: Coink landing page.

Now go ahead and insert one coin into your Coink! ^^

18 Chapter 5. Cloud integration

Coink Documentation, Release 0.0.1

5.3 Thingspeak

Integrating Coink with an external cloud service like Thingspeak is very straight forward thanks to their public REST-
ful API. We just need to write a couple of lines of code to process and visualize the data appropriately.

The following code snippet plots the daily savings in the last couple of days:

[data, time] = thingSpeakRead(516536, 'Fields', [1], 'NumDays', 7);
data = timetable(time, data)
data = retime(data, 'daily', 'sum')
bar(data.time, data.Variables, 'FaceColor', [1 .5 0])

The following code snippet plots the total accumulated savings:

[data, time] = thingSpeakRead(516536, 'Fields', [1], 'NumDays', 365);
curve = cumsum(data);
area(time, curve, 'FaceColor', [1 .5 0]);
title(strcat('Total savings: ', num2str(sum(data), '%.2f'), ' C'));
ylabel('C');

Note that the code above assumes that the Thingspeak channel was created to ingest a single field, which corresponds
to the coin that was detected on insertion. The code then sums by day or calculates the total cumulated sum.

5.4 References

5.3. Thingspeak 19

Coink Documentation, Release 0.0.1

20 Chapter 5. Cloud integration

CHAPTER 6

Indices and tables

• genindex

• search

21

Coink Documentation, Release 0.0.1

22 Chapter 6. Indices and tables

Index

A
abstract, 1

B
board, 3
box, 7
build, 6

C
cloud, 12
coink-server, 17

D
data, 10
differences, 11

F
flashing, 17

I
introduction, 1

M
materials, 1
micropython, 3

R
ramp, 7

S
sensor, 5
setup, 2

T
thingspeak, 18

V
visualization, 11

W
wiring, 8

23

	Introduction
	What is Coink?
	What do we need?

	Setup
	Board
	MicroPython
	Sensor
	References

	Build
	Ramp
	Box
	Wiring

	Data
	Visualization
	Differences

	Cloud integration
	Flashing the NodeMCU
	Coink server
	Thingspeak
	References

	Indices and tables

